LysoTracker® and LysoSensor™ Probes

Table 1. Contents and storage information.

<table>
<thead>
<tr>
<th>Material</th>
<th>Amount</th>
<th>Concentration</th>
<th>Storage</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>LysoTracker® and LysoSensor™ dyes</td>
<td>20 vials, each containing 50 μL</td>
<td>1 mM stock solution in high-quality, anhydrous DMSO</td>
<td>• ≤–20°C</td>
<td>When stored as directed, products are stable for at least 6 months *</td>
</tr>
<tr>
<td>LysoSensor™ Yellow/Blue dextran</td>
<td>5 mg, lyophilized solid</td>
<td>NA</td>
<td>• ≤–20°C</td>
<td>When stored as directed, product is stable at least 1 year</td>
</tr>
</tbody>
</table>

* If refreezing after use, be sure to seal the vial tightly.

Approximate fluorescence excitation and emission, in nm: See Table 2.

Introduction

LysoTracker® Probes

Weakly basic amines selectively accumulate in cellular compartments with low internal pH and can be used to investigate the biosynthesis and pathogenesis of lysosomes. The most frequently used acidic organelle probe, DAMP (D1552), is not fluorescent and therefore must be used in conjunction with anti-DNP antibodies conjugated to a fluorophore, enzyme, or ferritin to visualize the staining pattern. The fluorescent probes neutral red (N3246) and acridine orange (A1301, A3568) are also commonly used for staining acidic organelles, though they lack specificity.

These limitations have motivated us to search for alternative acidic organelle–selective probes, both for short-term and long-term tracking studies. The LysoTracker® probes are fluorescent acidotropic probes for labeling and tracking acidic organelles in live cells. These probes have several important features, including high selectivity for acidic organelles and effective labeling of live cells at nanomolar concentrations. Furthermore, the LysoTracker® probes are available in several fluorescent colors (Table 2), making them especially suitable for multicolor applications.

The LysoTracker® probes, which consist of a fluorophore linked to a weak base that is only partially protonated at neutral pH, are freely permeant to cell membranes and typically concentrate in spherical organelles. Their mechanism of retention has not been firmly established but is likely to involve protonation and retention in the membranes of the organelles, although staining is generally not reversed by subsequent treatment of the cells with weakly basic cell-permeant compounds. Note that in LysoTracker® dye–stained cells, the lysosomal fluorescence may constitute only a small portion of total cellular fluorescence, making it difficult to quantitate the number of lysosomes by flow cytometry or fluorometry.
LysoTracker® and LysoSensor™ Probes

LysoSensor™ pH Indicators

For researchers studying the dynamic aspects of lysosome biogenesis and function in live cells, we offer LysoSensor™ probes—fluorescent pH indicators that partition into acidic organelles. The LysoSensor™ dyes are acidotropic probes that appear to accumulate in acidic organelles as the result of protonation. This protonation also relieves the fluorescence quenching of the dye by its weak base side chain, resulting in an increase in fluorescence intensity. Thus, the LysoSensor™ reagents exhibit a pH-dependent increase in fluorescence intensity upon acidification, in contrast to the LysoTracker® probes, which exhibit fluorescence that is largely independent of pH.

Molecular Probes offers five LysoSensor™ reagents that differ in color and pKa (Table 2). Because these probes may localize in the membranes of organelles, it is probable that the actual pKa values in cellular environments will differ from the values listed in Table 2 and that only qualitative and semiquantitative comparisons of organelle pH will be possible. The blue and green fluorescent LysoSensor™ probes are available with optimal pH sensitivity in either the acidic or neutral range (pKa ~5.2 or ~7.5). Because of their low pKa values, LysoSensor™ Blue DND-167 and LysoSensor™ Green DND-189 are almost nonfluorescent except when inside acidic compartments, whereas LysoSensor™ Green DND-153 is brightly fluorescent at neutral pH. LysoSensor™ Yellow/Blue DND-160 (PDMPO) is unique in that it exhibits both dual-excitation and dual-emission spectral peaks that are pH-dependent (Figure 1). Nevertheless, this LysoSensor™ only exhibits the pH-dependent dual-emission spectra in living cells. In acidic organelles LysoSensor™ Yellow/Blue DND-160 (PDMPO) has predominantly yellow fluorescence, and in less acidic organelles it has blue fluorescence. Dual-emission measurements may permit ratio imaging of the pH in acidic organelles such as lysosomes or the acrosomes of spermatozoa. LysoSensor™ Yellow/Blue dextran allows loading of the cells by endocytosis. This conjugate should prove useful for studying the endocytic pathway. The pKa is somewhat lower than the pKa of the free LysoSensor™ Yellow/Blue dye.

These probes can be used singly (or potentially in combination) to investigate the acidification of lysosomes and alterations of lysosomal function or trafficking that occur in cells. For example, lysosomes in some tumor cells have a lower pH than normal lysosomes, while other tumor cells contain lysosomes with higher pH. In addition, cystic fibrosis and other diseases result in defects in the acidification of some intracellular organelles, and the LysoSensor™ probes may prove useful in studying these aberrations. As in LysoTracker® dye–stained cells, the lysosomal fluorescence in LysoSensor™ dye–stained cells may constitute only a small portion of total cellular fluorescence, making it difficult to quantitate the number of lysosomes or their pH by flow cytometry or fluorometry.
Before opening, allow the vial to warm to room temperature and then briefly centrifuge the vial in a microcentrifuge to deposit the DMSO solution at the bottom of the vial.

The concentration of probe for optimal staining will vary depending on the application. Here we suggest some initial conditions to use as a guideline. The staining conditions may need to be modified depending upon the particular cell type and the permeability of the cells or tissues to the probe, among other factors.

LysoTracker® and LysoSensor™ Dyes

1.1 Dilute the 1 mM probe stock solution to the final working concentration in the growth medium or buffer of choice. For the LysoTracker® probes, we recommend working concentrations of 50–75 nM and for the LysoSensor™ probes at least 1 µM. To reduce potential artifacts from overloading, the concentration of dye should be kept as low as possible.

Note: If the cells are incubated in dye-free medium after staining, we often observe a decrease in fluorescent signal and cell blebbing

1.2 For adherent cells, grow cells on coverslips inside a petri dish filled with the appropriate culture medium. When cells have reached the desired confluence, remove the medium from the dish and add the prewarmed (37°C) probe-containing medium. Incubate the cells for 30 minutes to 2 hours under growth conditions appropriate for the particular cell type. Then replace the loading solution with fresh medium and observe the cells using a fluorescence microscope fitted with the correct filter set (see Table 2). If the cells do not appear to be sufficiently stained, we recommend either increasing the labeling concentration or increasing the time allowed for the dye to accumulate in the lysosomes.

Note: Kinetic studies on the internalization of the LysoTracker® Green DND-26 and LysoSensor™ Yellow/Blue DND-160 (PDMPO) probes indicate that the rates of uptake of these dyes into living cells can occur within seconds. Unfortunately, these lysosomal probes can exhibit an “alkalizing effect” on the lysosomes, such that longer incubation with these probes can induce an increase in lysosomal pH. We suggest that these probes are useful pH indicators only when they are incubated with cells for 1–5 minutes at 37°C.
1.3 For suspension cells, centrifuge to obtain a cell pellet and aspirate the supernatant. Resuspend the cells gently in prewarmed (37°C) probe-containing medium. Incubate the cells for 30 minutes to 2 hours under growth conditions appropriate for the particular cell type (see note above regarding internalization rate of these probes). Re-pellet the cells by centrifugation and resuspend in fresh prewarmed medium. Observe the cells using a fluorescence microscope fitted with the correct filter set (Table 2). If the cells do not appear to be sufficiently stained, we recommend either increasing the labeling concentration or increasing the time allowed for the dye to accumulate in the lysosomes.

Alternatively, suspension cells may be attached to coverslips that have been treated with BD Cell-Tak® (BD Biosciences) and stained as if they were adherent cells (see step 1.2).

LysoSensor™ Yellow/Blue Dextran

2.1 To prepare a stock solution, reconstitute the lyophilized dextran to 50 mg/mL in phosphate-buffered saline, pH 7.4. Store the stock solution ≤−20°C, protected from light.

2.2 Dilute the stock solution to a final working concentration in the growth medium or buffer of choice. We recommend a working concentration of 1–5 mg/mL.

2.3 For adherent cells, grow cells on coverslips inside a petri dish filled with the appropriate culture medium. When cells have reached the desired confluence, remove the medium from the dish and add the prewarmed (37°C) dextran working solution. Incubate the cells for 1–24 hours under growth conditions appropriate for the particular cell type and experiment. Replace the loading solution with fresh medium and observe the cells using a fluorescence microscopy fitted with the correct filter set (Table 2).

2.4 For suspension cells, centrifuge to obtain a cell pellet and aspirate the supernatant. Resuspend the cells gently in pre-warmed (37°C) dextran-containing medium. Incubate the cells for 1–24 hours under growth conditions appropriate for the particular cell type. Re-pellet the cells by centrifugation and resuspend in fresh prewarmed medium. Observe the cells using a fluorescence microscope fitted with the correct filter set (Table 2).

References

Product List Current prices may be obtained from our website or from our Customer Service Department.

<table>
<thead>
<tr>
<th>Cat. no.</th>
<th>Product Name</th>
<th>Unit Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1301</td>
<td>Acridine orange</td>
<td>1 g</td>
</tr>
<tr>
<td>A3568</td>
<td>Acridine orange</td>
<td>10 mL</td>
</tr>
<tr>
<td>D1552</td>
<td>N-(3-((2,4-dinitrophenyl)amino)propyl)-N-(3-aminopropyl)methylamine, dihydrochloride</td>
<td>100 mg</td>
</tr>
<tr>
<td>L7533</td>
<td>LysoSensor™ Blue DND-167</td>
<td>20 x 50 µL</td>
</tr>
<tr>
<td>L7534</td>
<td>LysoSensor™ Green DND-153</td>
<td>20 x 50 µL</td>
</tr>
<tr>
<td>L7535</td>
<td>LysoSensor™ Green DND-189</td>
<td>20 x 50 µL</td>
</tr>
<tr>
<td>L22460</td>
<td>LysoSensor™ Yellow/Blue dextran, 10,000 MW, anionic, fixable</td>
<td>5 mg</td>
</tr>
<tr>
<td>L7545</td>
<td>LysoSensor™ Yellow/Blue DND-160 (PDMPO) 1 mM solution in DMSO</td>
<td>20 x 50 µL</td>
</tr>
<tr>
<td>L7525</td>
<td>LysoTracker® Blue DND-22</td>
<td>20 x 50 µL</td>
</tr>
<tr>
<td>L12490</td>
<td>LysoTracker® Blue-White DPX</td>
<td>20 x 50 µL</td>
</tr>
<tr>
<td>L7526</td>
<td>LysoTracker® Green DND-26</td>
<td>20 x 50 µL</td>
</tr>
<tr>
<td>L7528</td>
<td>LysoTracker® Red DND-99</td>
<td>20 x 50 µL</td>
</tr>
<tr>
<td>L12491</td>
<td>LysoTracker® Yellow HCK-123</td>
<td>20 x 50 µL</td>
</tr>
</tbody>
</table>

Contact Information

Molecular Probes, Inc.
29851 Willow Creek Road
Eugene, OR 97402
Phone: (541) 465-8300
Fax: (541) 335-0305
probesorder@invitrogen.com

Customer Service:
6:00 am to 4:30 pm (Pacific Time)
Phone: (541) 335-0338
Fax: (541) 335-0305
probesorder@invitrogen.com

Toll-Free Ordering for USA:
Order Phone: (800) 438-2209
Order Fax: (800) 438-0228

Technical Service:
8:00 am to 4:00 pm (Pacific Time)
Phone: (541) 335-0353
Toll-Free (800) 438-2209
Fax: (541) 335-0328
probestech@invitrogen.com

Invitrogen European Headquarters
Invitrogen, Ltd.
3 Fountain Drive
Inchinnan Business Park
Paisley PA4 9RF, UK
Phone: +44 (0) 141 814 6100
Fax: +44 (0) 141 814 6260
Email: euroinfo@invitrogen.com
Technical Services: eurotech@invitrogen.com

For country-specific contact information, visit www.invitrogen.com.

Further information on Molecular Probes products, including product bibliographies, is available from your local distributor or directly from Molecular Probes. Customers in Europe, Africa and the Middle East should contact our office in Paisley, United Kingdom. All others should contact our Technical Service Department in Eugene, Oregon.

Molecular Probes products are high-quality reagents and materials intended for research purposes only. These products must be used by, or directly under the supervision of, a technically qualified individual experienced in handling potentially hazardous chemicals. Please read the Material Safety Data Sheet provided for each product; other regulatory considerations may apply.

Limited Use Label License No. 223: Labeling and Detection Technology
The manufacture, use, sale or import of this product may be subject to one or more patents or pending applications owned or licensed by Invitrogen Corporation. The purchase of this product conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product in research conducted by the buyer (whether the buyer is an academic or for-profit entity) in a manner consistent with the accompanying product literature. The buyer cannot sell or otherwise transfer (a) this product (b) its components or (c) materials made using this product or its components to a third party or otherwise use this product or its components or materials made using this product or its components for Commercial Purposes. The buyer may transfer information or materials made through the use of this product to a scientific collaborator, provided that such transfer is not for any Commercial Purposes, and that such collaborator agrees in writing (a) to not transfer such materials to any third party, and (b) to use such transferred materials and/or information solely for research and not for Commercial Purposes. Commercial Purposes mean any activity by a party for consideration and may include, but is not limited to: (1) use of the product or its components in manufacturing; (2) use of the product or its components to provide a service, information, or data; (3) use of the product or its components for therapeutic, diagnostic or prophylactic purposes; or (4) resale of the product or its components, whether or not such product or its components are resold for use in research. For products that are subject to multiple limited use label licenses, the most restrictive terms apply. Invitrogen Corporation will not assert a claim against the buyer of infringement of patents that are owned or controlled by Invitrogen Corporation and/or Molecular Probes, Inc. which cover this product based upon the manufacture, use or sale of a therapeutic, clinical diagnostic, vaccine or prophylactic product developed in research by the buyer in which this product or its components was employed, provided that neither this product nor any of its components was used in the manufacture of such product. If the purchaser is not willing to accept the limitations of this limited use statement, Invitrogen is willing to accept return of the product with a full refund. For information on purchasing a license to this product for purposes other than research, contact Molecular Probes, Inc., Business Development, 29851 Willow Creek Road, Eugene, OR 97402, Tel: (541) 465-8300, Fax: (541) 335-0354.

Several Molecular Probes products and product applications are covered by U.S. and foreign patents and patents pending. All names containing the designation * are registered with the U.S. Patent and Trademark Office.

Copyright 2007, Molecular Probes, Inc. All rights reserved. This information is subject to change without notice.